a2 United States Patent

Little et al.

US009449044B1

US 9,449,044 B1
*Sep. 20, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(63)

(60)

(1)

(52)

MISTAKE AVOIDANCE AND CORRECTION
SUGGESTIONS

Applicant: The MathWorks, Inc., Natick, MA
us)

Inventors: John N. Little, Sherborn, MA (US);
Jason Breslau, Holliston, MA (US);
Nausheen Moulana, Southboro, MA
(US); Vadim Teverovsky, Acton, MA
(US); Bryan White, Holliston, MA
(US); Joseph F. Hicklin, Upton, MA
us)

The MathWorks, Inc., Natick, MA
us)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/622,381

Filed: Feb. 13, 2015

Related U.S. Application Data

Continuation of application No. 13/616,997, filed on
Sep. 14, 2012, now Pat. No. 9,081,761, which is a
continuation-in-part of application No. 13/074,717,
filed on Mar. 29, 2011, now Pat. No. 8,346,793.

Provisional application No. 61/378,550, filed on Aug.
31, 2010.

Int. CL.

GO6F 17/27 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC ... GO6F 17/30401 (2013.01); GO6F 17/30522

(2013.01)

- GLOBAL
¢ IDENTIFIERS |
N

T L ~ MEMORY|
' 379

EXPECTED
| IDENTIFIERS
350

o ALTERNATIVE® |
¢ IDENTIFIERS

- IDENTIFIER ™.
{ PATTERNS
: [A

KEYSTROKE
PENALTY
MATRIX
380

| LocAL |
{DENTIFIERS |

(58) Field of Classification Search
USPC ... 707/722, 758, 759, 769; 704/8; 715/773
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4/1990 Loatman et al.
11/1996 Church

(Continued)
OTHER PUBLICATIONS

4,914,590 A
5,572,423 A

Google, Google Suggest: Features—Web Search Help, available at
http://www.google.com/support/websearch/bin/answer.py?hl=en-
GB&answer=106230 (accessed Apr. 29, 2011).

(Continued)

Primary Examiner — Hung T Vy
(74) Attorney, Agent, or Firm — Venable LLP; Michael A.
Sartori

(57) ABSTRACT

In an illustrative embodiment, an apparatus, computer-
readable medium, or method may be configured to avoid
command mistakes and suggest corrections. Known com-
mands may be accessed which may include at least one
expected identifier, alternative identifier, and/or identifier
pattern. The frequencies of occurrence of the known com-
mands may be calculated. A command with entered identi-
fiers may be received and at least one possible mistake in the
entered identifiers may be detected. A first numerical score
for the known commands may be calculated using a string
matching algorithm, a keystroke penalty matrix, and/or the
detected at least one possible mistake. A second numerical
score may be calculated using the frequencies of occurrence
of the known commands and the first numerical score.
Expected identifiers may be selected using the first and
second numerical scores. A user-selectable command may
be created using the expected known commands and dis-
played.

24 Claims, 11 Drawing Sheets

300

INPUT DEVICE
310

! { PROCESSING

DEVICE
260

\ioume

US 9,449,044 B1
Page 2

(56)

5,940,847
6,848,080

7,880,730
7,920,132
8,346,793
2006/0293889

2007/0027858
2007/0040813

2008/0266261
2008/0306895

References Cited

U.S. PATENT DOCUMENTS

A % 8/1999 Fein ...occovvevevenrnnnn.
Bl* 1/2005 Lee covoovvirvieennns
B2 2/2011 Robinson et al.

B2 4/2011 Longe et al.

B1 1/2013 Hicklin et al.

AL* 12/2006 KiSS ..ooovcerivirerinrnnnn
Al 2/2007 Weinberg et al.
Al* 2/2007 Kushler
Al 10/2008 Idzik

Al 12/2008 Karty

2009/0199090 Al 8/2009 Poston et al.

2009/0284471 Al* 11/2009 Longec.oe... GOG6F 3/0237
345/168
2010/0257478 Al 10/2010 Longe et al.
GO6F 17/21
715/236 OTHER PUBLICATIONS

GO6F 17/2223

704/9 Leaning the Bash Shell, 3rd edition, available at http://proquest.
safaribooksonline.com/print?xmlid=0596009658/bash3-app-d
(accessed Sep. 1, 2009).
Wikipedia, Command Line Completion, available at http://en.
G107I“0}‘/52/§§ wikipedia.org/wiki/Command_ line_ completion (accessed Mar. 2,
2008).
GO6F 3/0237 Auto Completion, available at http://codebot.org/delphi/?doc=9451
345/173 (accessed Mar. 2, 2008).

* cited by examiner

US 9,449,044 B1

Sheet 1 of 11

Sep. 20, 2016

U.S. Patent

FIG. 1A

\ 195

\ 190

V180

FIG. 1B

U.S. Patent Sep. 20, 2016 Sheet 2 of 11 US 9,449,044 B1

216 FIG. 2A

220 209

FIG. 2B

FIG. 2C

U.S. Patent Sep. 20, 2016 Sheet 3 of 11 US 9,449,044 B1

300

- GLOBAL - /

. IDENTIFIERS
‘ 330

MEMORY |

|

370 |

EXPECTED |
IDENTIFIERS |
350 |

| [PROCESSING
A T DEVICE
¢ ALTERNATIVE - 320

IDENTIFIERS

INPUT DEVICE
310

.. rot
R NI g

OUTPUT
DEVICE
360

TN

 IDENTIFIER -

PATTERNS
395

KEYSTROKE
PENALTY
MATRIX

380

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I /'\"r hd ~
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

LocAL
IDENTIFIERS

J

S

FIG. 3

U.S. Patent

Sep. 20, 2016

400

\

Sheet 4 of 11

Entered Value 410

US 9,449,044 B1

Q| w | W | e
(]
AN
<t
2ia | o] 31 2|5
>
l._
Qo
= w | 3] 0|1]2
4]
<
wi 2111 0] 3
e | 5] 21 31| 0
E | 4 | 3 | 2 | 1

FIG. 4

U.S. Patent Sep. 20, 2016 Sheet 5 of 11 US 9,449,044 B1

500

210

Create keystroke penalty matrix 380 for comparing
expected commands with those of entered, unrecognized
commands.

e

O3
N
O

Receive inputted command

L

S

&)
\O¥]
(o]

Compare characters of the input command with
characters of expected identifiers and calculate a value
based on the keystroke penalty matrix.

240

Create an expected identifier score by adding the values
calculated in 530 per identifier and taking the exponent of
the result

FIG. 5

U.S. Patent Sep. 20, 2016 Sheet 6 of 11 US 9,449,044 B1

600

FIG. 6

U.S. Patent Sep. 20, 2016 Sheet 7 of 11 US 9,449,044 B1

700

Accessing known commands including expected identifiers, alternative identifiers, and/

710 or identificr patterns
1=

720 Calculating frequencies of occurrence of the known commands
J L

730 Receiving a command containing one or more entered identifiers
g

740

Detecting at least one possible mistake in the one or more entered identifiers

75
Calculating a first numerical score for the known commands using a string matching
algorithm, a keystroke penalty matrix, and the detected at least one possible mistake

[

S S

Calculating a second mumerical score using the frequencies of occurrence of the known
g g
760 commands and the first numerical score

Selecting one or more expected identifiers using the first numerical score and the

770 second numerical score;
J L
780 Creating a user-selectable command using the one or more selected expected
identifiers
J T
790 Displaying the user-selectable command
4 L
795

{I9 Allowing user modification of the user-selectable command
L

FIG.7

U.S. Patent Sep. 20, 2016 Sheet 8 of 11

//’

US 9,449,044 B1

840

iuﬂgglol ”orMatch(typedStrlng

[score matchj— bestg

prrglxtcnb pWords allWords M gapOpen gapExt@nd
4f(1sempty(pWords))
Str = load(o5 Lriors
pWords Str. DWords,
allW01dg = Str. allWord%,

match = loglO(969);
caseMiss = loglQ(0.010);
close = loglO(O 010’6),
3 hers closs misses

loglO(

128

loglO(0.00S):
loglQ(0.005);
kevboardDistance ([match,

gapOpen =

gapExtend

M
end

830

n length(workspaFeVars),
pWorkswaceVars ones(l,n)/n;

1y S

e
Curnant

Cions

W
localFiles =
lOC&lFllGo

what;
[w.m;w.mex] ";
= regexprep{localFiles,

= i1y tikely
n iength(iocaiFlles)
piocalFiles ones(l,n)/n;

cazeMiss,close,miss]) ;

)

FIG. 8A

U.S. Patent Sep. 20, 2016 Sheet 9 of 11 US 9,449,044 B1

(e}
o

candidates = [workspaceVars,lcocalFiles,allWords];

pCandidates =
[pWorkqpaceVarQ/3 pLocalFiles/3,pWords/31;
2 - J H S IS oo

;\.:\

scores = zeros(q1ze(ﬁand1dat@\)),

for i = l:length(candidates) 4-——"‘"'850

candidate = candidates{i};
thisScore = affinegapmex (uint8 (typedString),

uint8 (candidate), gapOpen, gapExtend, M, 1);

and
wse Baves theoram to combine scaore and prio
pGuess = scores .* pCandidates / Sum(scores K
pCandidates);
and the winn [e
[score,i] = max(pGuess);
match = caﬂdlda es{l},
¢L(trum)
[yScore,iScore] = sort(pGuess, 'dezcend');

fprintf (*hnt);
for i = 1:1000
if(yScore (i) < yScore(l)/1000000)
break;
and
index = iScore(i);
fprintf ("%&s 5 = candidates{index},
vScore (1), scores(lndmx) pCandidates (index));
end
fprintf{(*in');
end

-
t 7

FIG. 8B

U.S. Patent Sep. 20, 2016 Sheet 10 of 11 US 9,449,044 B1

900

SERVICE TARGET
PROVIDER ENVIRONMENT
930 960
CLIENT 910
CLUSTER 970
TECHNICAL UNIT OF
COMPUTING EXECUTION
ENVIRONMENT (UE) 980a
(TCE) 920
NETWORK
240
UE 980¢
GRAPHICAL
MODELING
SOFTWARE
930
ANALYSIS UE 980d
SOFTWARE
935
UE 980b

FIG. 9

U.S. Patent Sep. 20, 2016 Sheet 11 of 11 US 9,449,044 B1

COMPUTER SYSTEM 1000

INPUT

DEVICE —
310 PROCESSING

DEVICE
320

INTERCONNECT
1050

OUTPUT
DEVICE —
360

STORAGE
DEVICE
1040

MEMORY
370

NETWORK
INTERFACE |
1080

FIG. 10

US 9,449,044 B1

1

MISTAKE AVOIDANCE AND CORRECTION
SUGGESTIONS

RELATED APPLICATIONS

This patent application is a continuation of U.S. patent
application Ser. No. 13/616,997, filed Sep. 14, 2012, which
is a continuation-in-part of U.S. patent application Ser. No.
13/074,717 filed on Mar. 29, 2011, which claims the benefit
of U.S. Provisional Patent Application No. 61/378,550, filed
Aug. 31, 2010. Each of the above-identified applications is
hereby incorporated by reference in their entirety.

BACKGROUND SECTION

Some computing systems may provide users with assis-
tance while the user interacts with the computer. For
example, some systems may provide spell checkers or auto
completion functions for use with search applications.

Spell checkers may work by comparing a series of char-
acters against each word in a dictionary (i.e., a list of
correctly spelled words). Word processing applications, such
as Microsoft® Word, may contain spell checking function-
ality that may identify a possibly misspelled word and may
suggest possible correct spellings. Microsoft® Word also
contains grammar checking functionality that may identify
and alert users to potential grammatical errors.

Google Suggest™, on the other hand, may provide a
listing of possible search queries while a user is typing based
on other search queries. One or more algorithms based on
factors, such as the popularity of a particular search, may be
used to populate the suggested search list. Additionally,
Google Suggest™ may provide search alternatives if the
search terms are potentially misspelled.

The Apple® 108 operating system may provide an auto-
correct feature that automatically replaces potentially mis-
spelled words to known alternatives. As a user types, the iOS
operating system may automatically correct and replace the
user’s entries with known alternatives.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more embodiments of the invention and, together with the
description, explain one or more illustrative embodiments of
the invention. In the drawings,

FIGS. 1A and 1B illustrate example screen-shots of
command-line interfaces configured to practice an illustra-
tive embodiment;

FIGS. 2A, 2B, and 2C illustrate additional example
screen-shots of command-line interfaces configured to prac-
tice an illustrative embodiment;

FIG. 3 illustrates an example processing system config-
ured to practice an illustrative embodiment;

FIG. 4 illustrates a portion of an example keystroke
penalty matrix depicting mistyping penalties in an illustra-
tive embodiment;

FIG. 5 illustrates an example flowchart describing pro-
cessing of a penalty matrix performed by hardware in an
illustrative embodiment;

FIG. 6 illustrates a portion of an identifier frequency
graph depicting the probability of occurrence of an example
subset of identifiers in an illustrative embodiment;

FIG. 7 illustrates an example flowchart describing pro-
cessing performed by hardware in an illustrative embodi-
ment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 8A and 8B illustrate example software code that
may implement an illustrative embodiment of the invention;

FIG. 9 illustrates a distributed environment that may be
configured to practice an illustrative embodiment;

FIG. 10 illustrates an example of a computer system that
may be configured to practice an illustrative embodiment.

DETAILED DESCRIPTION

Overview

Information processing systems, such as text-based pro-
gramming environments, may allow for the input of textual
data. The inputted textual data may be transformed by the
information processing system into another form of infor-
mation (e.g., but not limited to, statistics, graphs, tables,
graphics, etc.). Inputted textual data may include a finite
number of identifiers which may be interpreted by the
processing system. Identifiers may include, for example,
global identifiers, global variables, global functions, global
methods, global keywords, special characters, global com-
mands, workspace variables, local commands, local key-
words, operators, local functions, local scripts, local vari-
ables, local methods, argument names, tokens stored in files,
keywords, parameter names, enumerated values, properties,
properties of an object, methods of an object, features, other
lexical tokens recognized by the information processing
system, etc. For the information processing system to cor-
rectly interpret the identifier, the identifier may be required
to contain the correct characters in the correct sequence.
Additionally, information processing systems may be case
sensitive. As such, the identifier may need to be in the
correct type case. For example, if the identifier is misspelled
or otherwise entered incorrectly the information processing
system may not be able to correctly interpret the identifier.

Users, especially novice users, may inadvertently enter
identifiers incorrectly into the information processing sys-
tem. Information processing systems may detect the incor-
rect identifier and request correction. However, information
processing systems may not offer the user an accurate list of
possible correct identifiers. Also, identifiers may be used that
are syntactically correct but not what the user intended or
contextually incorrect.

An example embodiment may assist in the selection of
correct identifiers and may avoid mistakes by displaying one
or more possible identifiers after identifying an incorrect
identifier or possible user mistake. This illustrative embodi-
ment may use one or more algorithms to determine the one
or more possible or alternative identifiers to display. In this
illustrative embodiment, prior statistics such as the fre-
quency of use for each expected identifier may be created.
The statistics may be calculated using gathered data from,
for example, the user environment, context, synonyms,
multiple natural languages (e.g., English, French, Spanish,
Korean, Japanese, Chinese, Arabic, Farsi, etc.), unlicensed
products, prior releases, other programing languages (e.g.,
C/C++, Java, MATLAB® programming language by The
MathWorks, Inc., etc.), etc.

In one embodiment, identifiers that do not appear in
gathered data may be assumed to be infrequently used and
may be assigned a low probability of user intent. A string
matching algorithm may be utilized which may compare the
entered string with known identifiers and/or known com-
mands. Then, based on statistics, such as, the frequency of
use and the result from the string matching algorithm,
another algorithm may compute a set of potential matches.
These potential matches may be displayed to the user as

US 9,449,044 B1

3

possible alternatives to the possible user mistake (e.g.,
mistyped identifier, unrecognized identifier, contextual
error, etc.).

In an example embodiment, suggested alternatives for an
unknown identifier may come from one or more of, for
example, syntax, context, synonyms, user environment,
prior releases, unlicensed products, locale information, etc.

Corrections may include suggestions for one or more, for
example, detected errors or mistakes in command and func-
tion calls, indexing, punctuation, property names, shape and
type of arguments, misused synonyms, foreign languages,
operators and keywords from other computer languages,
deprecated functions, context sensitive typographical errors,
unlicensed products, scope, user environment changes, etc.

In some cases, the command, code, or program may be
syntactically correct but, nonetheless, may not be semanti-
cally and/or contextually correct and may not execute as the
user intended. In such a case, suggestions may be provided
to the user to enable the program to be written as the user
may have intended.

In some cases, when an error or possible error is detected,
a suggestion or suggestions may be provided to the user. The
user may then be required to accept the suggestion, refuse
the suggestion, modify the suggestion, or supply a different
identifier. However, if the probability that the unknown
identifier is a match crosses a given threshold (e.g., a 99%
certainty that the user intended the found identifier) or if a
previous configuration indication is given by the user (e.g.,
the user selects the option to autocorrect), the suggestion
may be implemented in the program without user interven-
tion.

Catching command function duality mistakes may
involve identifying when the user meant to pass a reference
by value instead of as a string literal. In some interpretive
languages, several ways may exist for calling functions, for
example, using either command syntax or function syntax
(i.e., command function duality). A function call in com-
mand syntax may be of the form function name argl
arg2 . .. argn. While in function syntax, the same function
call may be of the form function name (argl, arg?2, . . . argn).
When calling a function in command syntax, the arguments
may be passed as string literals. However, when calling a
function in function syntax, the arguments may be passed by
value. Accordingly, situations may occur when the user is
calling a function and passing a string literal (e.g., using
command syntax) when the user would expect to be passing
the value.

For example, when using mathematical functions a user
might rarely expect the ASCII string value of a number to be
passed to the function. For example, if the user typed the
command “SUM 42.” the system may suggest using “SUM
(42)” instead. Command line and function call issues may
not be system errors (i.e., the command will be accepted by
a command interpreter); however, there may be a high
likelihood that the user meant something other than the
entered text. Accordingly, a suggestion may be made to use
the function syntax, for example.

Catching indexing mistakes may involve, for example,
identifying misnumbering of an index in a multidimensional
array. In some computer languages, indexing a matrix may
use two subscripts representing the rows and columns (e.g.,
where M is a matrix, M(2,3), retrieves the value at the
second row, third column). Some computer languages sup-
port linear indexing, where the matrix is treated as one long
column of values. Accordingly, when a single subscript is
supplied (e.g., M(16)), the system may return the element
corresponding to the requested element (e.g., the sixteenth

10

15

20

25

30

35

40

45

50

55

60

65

4

element from the one long column of values). However,
often users may not want to use linear indexing and instead
may want to request row and column indicators. Thus, when
a single argument is supplied, a suggestion may be made to

use a multiarray value or special characters such as “:” (e.g.,

M(16,).

Catching punctuation errors may involve, for example,
identifying the misuse of special characters and providing
suggested alternatives. For example, suggesting using “}”
when “)” was supplied.

Context based corrections and/or suggestions may be
based on, for example, known properties or methods. An
object, for example, may have defined properties or meth-
ods. When an error such as an unknown property or method
occurs when processing an object, a suggestion to the user
may be made based on the defined or known properties or
methods. Accordingly, typographical errors when using
defined properties or methods may be corrected based on
what may be expected when using that object.

In addition to finding unknown properties due to known
classes, suggestions to the user may also be made based on
classes limited to those which have a specified property. For
example, if a typographical error is in a classname, the list
of possible classes may be limited to those which have the
specified property. For example, given class “Square” with
a property “Length” if “Square.Lengty” is supplied (e.g.,
typed in by a user) matches may be made against the
properties of Square and Length may be found for Lengty.
However, if “Sqiare.Length” is supplied, “Sqiare” may be
identified as unknown and the list of possible suggestions
may be limited to classes which have a property “Length.”
Furthermore, “Sqiare.Lengty” may be matched by combin-
ing both rules for matching classnames and properties.
Additionally, properties and methods of a class are one of
many instances in which a dot represents a name within the
scope of another name. Classes inside packages, packages
inside packages, functions inside packages, fields inside
structs, etc. are other examples to which these rules may also
apply.

A context mistake may occur, for example, when the user
enters one or more identifiers incorrectly based on the shape
and type of arguments used, uses deprecated or outdated
features or features that are no longer available due to
release incompatibilities, or attempts to access unlicensed
features.

Context based corrections and/or suggestions may be
based on the shape and type of arguments used. If, for
example, an incorrect argument type was used, suggestions
may be based on similarly named and correctly typed
alternative arguments. A class or an object, for example, may
change between when access to the class was written in code
(e.g., write time) and then during code execution (e.g.,
runtime). Accordingly, for example, if an error occurs where
the runtime object is different from the write time imple-
mentation, a suggestion to the user may be based on the
changes made to the class or object.

Context based corrections and/or suggestions may be
based on deprecated or outdated features or features that are
no longer available due to release incompatibilities. When
new versions of software are released, features from prior
versions may become deprecated, superseded, or removed
from newer versions. Accordingly, if, for example, executed
code is using outdated features, corrected code (e.g., code
using features from the updated release) may be suggested
to the user. Such a suggestion may be in the form of a
command that contains replacement identifiers, for example.

Suggestions may also come from known products that are
not currently licensed by the user. Occasionally, users may

US 9,449,044 B1

5

reference features that are not available from their currently
purchased products (e.g., unlicensed products). If a feature
is identified as being from an unlicensed product, a sugges-
tion may be made to encourage purchase of the unlicensed
product and/or instructions on how to use alternative, cur-
rently purchased, features may be supplied.

Corrections and/or suggestions may also be based on
misused synonyms received via an input device. When
attempting to reference features, users may accidentally use
a synonym when referring to that feature. For example, users
may reference “graph” when they intended to reference
“plot.” Accordingly, when a user supplies “graph,” a sug-
gestion to use “plot” may be presented to the user. A list of
synonyms may be referenced to assist in detecting accidental
synonym usage. The list may be updated automatically
and/or may be maintained (e.g., edited) by the user.

Similar to suggestions based on misused synonyms, sug-
gestions may also be based on alternative natural languages
(e.g., English, French, Spanish, German, Russian, Arabic,
Chinese, etc.). For example, if a user references the French
“qui,” the English “who” may be suggested. Translations
may be matched based on the locale indicated by a computer
system (e.g., Mac 0/S or Windows O/S) or by the user.
Alternatively, a known list of natural language translations
for many languages may be supplied. A list for multiple
natural language translations and/or single language trans-
lations may be updated automatically and/or may be main-
tained (e.g., edited) by the user. Accordingly, the user
suggestion may contain, for example, replacement identifi-
ers, where the replacement identifiers contain the English
language version of the user entered command.

Similar to misused synonyms, corrections and/or sugges-
tions may be based on shortened commands (e.g., abbrevi-
ated, contracted, abridged, truncated, an acronym, com-
monly used form, etc.). In some cases a user may supply a
short name when the user intended to reference a long name.
For example, if a user supplies “eig,” the long name “eigen-
value” may be suggested, or if the user supplies “sin,” the
long name “sine” may be suggested. A list may be main-
tained that aligns the shortened command with the correct
identifier. The list may be updated automatically and/or may
be maintained (e.g., edited) by the user. Accordingly, the
replacement identifiers may contain the long version of the
entered command. Additionally, the abbreviations may go
both ways, as the correct function name may be abbreviated.
If, for example, the user specifies a full name and the correct
function is an abbreviation, the abbreviation may be sug-
gested.

Similar to corrections and/or suggestions based on natural
languages, suggestions may also be based on alternative
computer languages. Users familiar with other computer
languages may be inclined to use the same operators and
keywords from other computer languages. For example, if a
user using a language, such as the MATLAB® programming

language, supplies the commands “a+=2,” “a++,” ““f00,””
or “la,” the following alternatives may be suggested “a=a+
2,7 “a=a+l,” ““f00,”” or “~a,” respectively. Using syntax

that is not supported by the programming language will
result in a syntax error and may cause unpredictable results.
Accordingly, alternative syntax suggestions may be supplied
when incorrect syntax, common with other computer lan-
guages, is provided by a user. Computer languages may
include, for example, one or more of MATLAB®, M, an
array-based language, Mathematica, Python, R, C, C++,
Java, Fortran, Pascal, Basic, Ada, ML, JavaScript, HTML,

20

40

45

50

55

6

XML, Perl, SQL, C#, etc. Accordingly, the replacement
identifiers may contain a proposed correct syntax for the
user entered command.

Typographical errors may also be detected based on the
context of when and where the error occurred. Given a
particular context, particular suggestion(s) may be supplied
based on that context. Given contexts may include one or
more of, for example, object properties and object methods,
parameter names, enumerated values, etc. Thus, when a
particular object is given, the object’s properties and meth-
ods are known and may be used to determine the sugges-
tions.

For example, given a currentDate object, with year, day,
and month properties, if “currentDate.Yesr” was entered,
“currentDate. Year” may be suggested. Similarly, given a
block of code (e.g., function, sub-routine, etc.) with a
defined parameter, the parameter may be given as a sug-
gested alternative to a closely matched unknown identifier.
For example, if the defined parameter is “numberOfCoins”
and the unknown identifier is ‘“numberfCoins,” the defined
parameter “numberOfCoins” may be given as a suggestion.
Suggestions may also be given in the context of enumerated
values. For example, if “color.Bluw” is given, “color.Blue”
may be suggested. Such name value pairing provides the
context to suggest valid identifiers and may be used to
increase the likelihood percentage of a match.

Additionally, some properties, methods, enumerated val-
ues, etc. may be unknown to the user when writing the code
(e.g., at write time) and may be left blank or filled with
temporary place holders. During runtime or compile time,
the blank values or temporary place holders may require
valid identifiers and the user may be given a list of possible
suggestions based on the context and known values at
runtime.

Correction and/or suggestion information may also be
obtained from the user environment. Suggestions may be
generated based on user history, such as one or more of
frequently used features, the changing of scope, locale
information, previously accepted suggestions, etc.

Different users may use different identifiers at varying
rates. Identifiers that have been used often may be more
likely to be used again by that same user. Accordingly,
identifiers that are used often may have a higher probability
of being suggested to the user. For example, if a particular
function call is used often, then the probability increases that
the user will intend to use that function call and, therefore,
a suggestion is more likely to include that often used
function call. Knowledge of how often particular features
are used may be generated as the user enters information
(e.g., types on the keyboard, uses the mouse, etc.) and/or
may be generated through analyzing logs.

In addition to identifying usage patterns for a specific
user, the patterns may be used to match a user against a
profile of users. For example, a user could frequently be
using “plot” and “line,” which may match the user against
other profiles of users which use “plot” and “line.” Then,
frequently used functions from those other profiles, which
may have never been used by the user, may also have an
increased likelihood. This information may also be pre-
sented in tips. An example tip, may include “Other users
who used the functions you are using also like to use
functions X, Y, and Z.”

Occasionally programming language features that were
available in one session may become out of scope in another
session. Corrections and/or suggestions may be based on
identifiers that were previously available and are now out of
scope. Programming languages may use variables such as

US 9,449,044 B1

7

the current directory or directory path to find features (e.g.,
identifiers, classes, functions, etc.). If, for example, the
current directory or local path is changed, programming
language features may go out of scope and previously valid
features may become out of scope. Suggestions may be
given based on the previously valid features with a descrip-
tion of where the feature went, how the user may be able to
correct the problem, and/or the past usage of the directory
paths, for example.

A keyboard penalty matrix may be used to determine the
probability that the user intended to use a known identifier.
The keyboard penalty matrix may be configured based on
the user locale information and/or keyboard selection (e.g.,
QWERTY keyboard, Dvorak keyboard, Arabic keyboard,
etc.).

Suggestions and/or corrections may also be based on past
history of which suggestions were presented, which sugges-
tions were selected, which sections were not selected, and/or
which selections were modified. The logic that supplies the
suggestions may adapt and learn based on usage history. The
suggestions that are supplied to the user may be influenced
based on prior usage or usage patterns. Furthermore, sug-
gestions for specific mistakes and the user response (e.g.,
accepted, rejected, or edited) may be stored and, if the same
mistake occurs again, the suggestion to the user may be
influenced based on the user’s prior responses. For example,
if a particular suggestion is often accepted (e.g., been
accepted for the past five times), the suggestion may have an
increased chance in being presented as a suggestion in the
future when the same error occurs. Or, for example, if a
particular suggestion is often rejected by a user (e.g., not
accepted for the past five times when suggested), the sug-
gestion may have a decreased chance of being presented as
a suggestion in the future when the same error occurs.
Additionally, if a suggestion is consistently modified (e.g.,
the suggestion is not accepted but a variant of the suggestion
is accepted), the modification may be aligned with the error
causing the suggestion and the modification may then be
suggested in the future when the same error occurs.

Accordingly, adaptations based on historical use may take
several different forms. For example, probabilities may be
updated to reflect usage or usage patterns. In another
example, responses (e.g., accepted, rejected or edited) to
suggestions for specific unknown identifiers or mistakes
may be stored; the stored information based on the response
may then be applied to future suggestions if the same
unknown identifier or mistake is again inputted.

Iustrative Examples

FIGS. 1A and 1B illustrate example screen-shots of
command-line interfaces 100 and 140 configured to practice
an illustrative embodiment.

The example screen-shot of command-line interface 100
depicts user-entered string “c=magix(5)” 110 entered into
the command-line interface 100. In this illustrative embodi-
ment, the information processing system may recognize
“magix” in the user-entered string 110 as an unrecognized
identifier and displays error message 120. The system may
evaluate the probability of all the possible alternatives and
display the alternative with the highest probability of being
the correct identifier. Here, in this example, “magic”
replaces “magix” and displays “c=magic(5)” as the sug-
gested identifier 125. In this illustrative embodiment, sug-
gested identifier 125 was selected, and the program contin-
ued with matrix 130.

10

15

20

25

30

35

40

45

50

55

60

65

8

The example screen-shot of command-line interface 140
depicts user-entered string “ploy(1:10)” 150 as being
entered into the command-line interface 140. In this illus-
trative embodiment, the information processing system may
recognize “ploy” in the user-entered string 150 as an unrec-
ognized identifier and may display error message 160.

The system may evaluate the probability of all the pos-
sible alternatives and may display the suggested identifier
with the highest probability of being the correct identifier.
Here, in this example, “plot,” a built-in function name,
replaces “ploy” and “plot(1:10)” is displayed as user-select-
able option 170. In another embodiment, multiple suggested
identifiers may be displayed, and these multiple suggested
identifiers may be ranked according to their probabilities.
User-selectable option 170 may be selected by, for example,
using a mouse, other pointing device, or a keyboard. Con-
currently or after selection of user-selectable option 170, the
suggested identifier may be executed. An embodiment may
allow a suggested identifier to be modified before execution
to further correct the user-entered string. For example, user
modified command 180, where the user added “magix,” may
be executed. Alternatively, a user may choose not to select
the user-selectable option 180 and may enter a different
command into command-line interface 140. Here, the user
modified command 180 may also contain an unrecognized
identifier and error message 190 may display. Again, the
system may have evaluated the probability of all the possible
alternatives and may display the suggested identifier or
identifiers with the highest probability of being the correct
identifier. Here, in this example, “magic” replaces “magix”
and displays “plot(magic(1:10))” as user-selectable option
195. In this example, the system detected an unknown
identifier when it expected a variable of type double.

FIGS. 2A, 2B, and 2C illustrate additional example
screen-shots of command-line interfaces 210, 220, and 230
configured to practice an illustrative embodiment.

The example screen-shot of command-line interface 210
depicts user-entered string “surt(peals)” 212 entered into the
command-line interface 210. In this illustrative embodi-
ment, the information processing system may detect both
“surt” and “peals” in user-entered string 212 as unrecog-
nized identifiers and may display an error message 214.

The system may evaluate the probability of all the pos-
sible alternatives and may display the suggested identifiers
with the highest probability of being the correct identifiers.
In this example, “surt” and “peals” may be replaced with
“surf” and “peaks” respectively, and may be displayed as
user-selectable option 216. In this example, the system
corrected multiple typographical errors in the same state-
ment.

The example screen-shot of command-line interface 220
depicts user-entered commands 222, 224, and 226. In user-
entered command 222, the variable “t” is set equal to
“1:0.1:100.” In user-entered command 224, the variable “y”
is set equal to “sin(t).” User-entered command 226 uses
variable “t” and the incorrect case of variable “y” as “plot(t,
Y).” In this illustrative embodiment, the information pro-
cessing system may detect “Y” as an unrecognized identifier
and may display error message 228.

The system may evaluate the probability of all the pos-
sible alternatives and may display the suggested identifiers
with the highest probability of being the correct identifiers.
In this example, “Y” may be replaced with “y,” and may be
displayed as user-selectable option 229. In this example, the
system corrected the variable with the incorrect case.

The example screen-shot of command-line interface 230
depicts user-entered commands 232, 234, and 236. In user-

US 9,449,044 B1

9

entered command 232, the variable “y” is set equal to
“rand(10).” In user-entered command 234, the variable
“meanValue_ofY™ is set equal to “mean(y).” User-entered
command 236, is shown as “meanValue_of_Y>0.2.” In this
illustrative embodiment, the information processing system
may identify “meanValue_of_ Y™ as an unrecognized iden-
tifier and may display error message 238.

The system may evaluate the probability of all the pos-
sible alternatives and may display the suggested command
with the highest probability of being correct. In this
example, “meanValue_of Y” may be replaced with the
previously defined “meanValue_ofY,” and may be displayed
as user-selectable option 239. In this example, the system
suggested a correction for the mistyped variable name.

Other illustrative embodiments of the invention may
include alternative ways of displaying and selecting sug-
gested identifiers. Such selections may include, for example,
a list box, drop-down list, pop-up menu, context menu,
combo-box, or other text and/or graphical selection tech-
niques.

Additionally, in an illustrative embodiment, identifiers
may be verified as they are being supplied. For example,
partial recognition may occur as an identifier is being
entered. Also, the user may request the system to detect the
entered identifiers and suggest possible expected identifiers.
For example, a user may enter “plo” and press the tab key,
requesting the system to examine “plo.” The system may
detect that “plo” is an unrecognized identifier and suggest
“plot” which the user may accept and/or modify.

In an illustrative embodiment, identifier verification may
also occur after the command is executed (e.g., after the
“Enter” key is pushed). If the user identifier is unrecognized,
the user may be prompted with suggested identifiers.

Example System

FIG. 3 illustrates an example processing system 300
configured to practice an illustrative embodiment. In the
illustrative embodiment of FIG. 3, system 300 may include
devices such as, for example, input device 310, processing
device 320, output device 360, and memory 370. System
300 may also include various data, including, for example,
global identifiers 330, local identifiers 340, expected iden-
tifiers 350, keystroke penalty matrix 380, alternative iden-
tifiers 390, and identifier patterns 395.

Input device 310 may include a device for providing
inputs to processing device 320. For example, input device
may receive input from a user or another device. Input
device 310 may include, for example, a keyboard, track ball,
touch sensitive display, haptic device, microphone, etc.

Processing device 320 may include hardware configured
to execute computer-executable instructions that implement
illustrative embodiments. The instructions may reside in
memory 370. Examples of processing devices that may be
used includes the 3" Generation Intel® Core™ i7 processor
available from Intel Corporation, Santa, Clara, Calif., field
programmable gate arrays (FPGA’s), graphics processing
units (GPUs), application specific integrated circuits
(ASICs), etc.

Global identifiers 330 may include identifiers such as, but
not limited to, global variables, functions, methods, identi-
fier synonyms, identifier natural language translations, prior
release identifiers, identifiers from unlicensed products,
other programming language identifiers, abbreviated iden-
tifiers, short version of identifiers and/or keywords used in
a particular product line or lines (e.g., but not limited to,
MATLAB®). Global identifiers 330 may be stored in

10

15

20

25

30

35

40

45

50

55

60

65

10

memory 370 or other local storage, or global identifiers 330
may be stored in a location remote (e.g., a cloud) from
processing system 300.

Local identifiers 340 may include identifiers such as, but
not limited to, local variables, user-defined variables, work-
space variables, function names, method names, argument
names, operating system values, and/or file defined tokens,
variables, scripts, methods and/or functions. User-defined
variables may be identified in whatever manner processing
system 300 allows users to define identifiers (e.g., but not
limited to, a user-defined path to files where the names of the
files become identifiers). Local identifiers 340 may be stored
in memory 370 or other local storage, or local identifiers 340
may be stored in a location remote (e.g., a cloud) from
processing system 300.

Expected identifiers 350 may include both global identi-
fiers 330 and local identifiers 340. Identifiers in expected
identifiers 350 may be associated with a frequency of
occurrence. For example, commonly used commands (e.g.,
“cd”) are used often and, therefore, may have a higher
frequency of occurrence. A higher frequency of occurrence
may also be assigned based on the context of the unknown
identifier. The combination of expected identifiers 350 and
associated frequency of occurrences may be called a prior
probability distribution or as may be colloquially called by
mathematicians “the prior.”

Output device 360 may include a device for providing
outputs from processing device 320. Output device 360 may
include, for example, cathode ray tubes (CRTs), plasma
displays, light-emitting diode (LED) displays, liquid crystal
displays (LCDs), printers, vacuum florescent displays
(VFDs), surface-conduction electron-emitter displays
(SEDs), field emission displays (FEDs), etc.

Memory 370 may be a computer-readable medium that
may be configured to store instructions configured to imple-
ment illustrative embodiments of the invention. Memory
370 may be a primary storage accessible to processing
device 320 and may include a random-access memory
(RAM) that may include RAM devices, such as, for
example, Dynamic RAM (DRAM) devices, flash memory
devices, Static RAM (SRAM) devices, etc. Memory 370
may store global identifiers 330, local identifiers 340,
expected identifiers 350, keystroke penalty matrix 380,
alternative identifiers 390, and identifier patterns 395.

Keystroke penalty matrix 380 may include a matrix (e.g.,
128 by 128) of values. Each value may represent a mistyping
penalty. Keystroke penalty matrix 380 is further described
with respect to FIG. 7 below.

Alternative identifiers 390 may be processed similarly to
expected identifiers 350. Alternative identifiers 390 may
include one or more, for example, synonyms of expected
identifiers, language translations of expected identifiers,
recently modified identifiers, alternative names of expected
identifiers, unlicensed features, recently used identifiers,
release incompatible identifiers, deprecated identifiers, spe-
cial characters, property names, locale information, enumer-
ated values, object properties, object methods, information
from user logs, etc.

Identifier patterns 395 may be processed similarly to
expected identifiers 350. Identifier patterns 395 may include
one or more of, for example, programing language grammar,
programing language syntax, programming language opera-
tors, programing language keywords, programing language
punctuation, alternative programing language grammar,
alternative programing language syntax, alternative pro-

US 9,449,044 B1

11

gramming language operators, alternative programming lan-
guage keywords, alternative programming language punc-
tuation, etc.

In operation, input device 310 may allow input of iden-
tifiers and may forward the entered identifiers to processing
device 320. Processing device 320 may interpret the iden-
tifiers and detect entered identifiers that do not match the
expected identifiers 350, alternative identifiers 390, identi-
fier patterns 395, and/or whose context appears to be incor-
rect. When processing device 320 detects an unrecognized
identifier, processing device 320 may, for expected identi-
fiers 350, use a string matching algorithm (e.g., but not
limited to, Needleman-Wunsch algorithm or Smith-Water-
man algorithm) combined with keystroke penalty matrix
380, to calculate the probability that the user would type the
unrecognized identifier given that the user intended to type
an expected identifier.

Keystroke penalty matrix 380 may be used by processing
device 320 to calculate keystroke penalties between entered
identifiers and expected identifiers 350. For example, a
character key on a keyboard that is located near a character
from an expected identifier may be penalized less than
character keys that are further away.

For expected identifiers 350, processing device 320 may
use Bayes theorem, for example, to calculate a second
probability that the user intended to type that expected
identifier given both, the frequency of occurrence of that
expected identifier and the previous string matching prob-
ability result. Once this second probability is determined for
the expected identifiers 350, expected identifiers that have a
probability higher than a threshold value may be displayed
on output device 360. Alternatively, the identifiers having
the highest one, two, three, etc. probabilities may be dis-
played on output device 360. If desired, embodiments may
be configured to order identifiers based on their respective
probabilities, e.g., rank ordering identifiers.

In another embodiment, if the probability is higher than a
second threshold value, for an expected value, the suggested
identifier may automatically replace the unrecognized iden-
tifier without additional interaction from the user. In another
embodiment, the suggested identifier may automatically
replace the unrecognized identifier if previously indicated by
the user. In this case, the user may select the second
threshold value to replace the unrecognized identifier or the
user may specify that certain unrecognized identifiers are
replaced by indicated identifiers.

In some embodiments, processing device 320 may detect
alternative identifiers 390 and/or identifier patterns 395.
Alternative identifiers 390 may be mapped to expected
identifiers 350. When an alternate identifier from alternative
identifiers 390 is detected a corresponding expected identi-
fier from expected identifiers 350 may be identified. The
identified expected identifier may be presented to a user for
selection and/or modification. Identifier patterns 395 (e.g.,
incompatible programming language syntax or possible
command mistake based on context) may be mapped to
corresponding suggested identifier patterns (e.g., correct
programming language syntax for the current programming
language or a suggested command based on context). When
an identifier pattern (e.g., i++) from identifier patterns 395 is
detected a corresponding suggested identifier pattern from
suggested identifier patterns may be identified. The sug-
gested identifier pattern may be presented to a user for
selection and/or modification.

In an embodiment, the list of expected identifiers may be
different depending on context. For example, when an
identifier is used on its own, the sources of global identifiers

10

15

20

25

30

35

40

45

50

55

60

65

12

and local identifiers may be used. However, if, for example,
the usage is “knownldentifier unknownldentifier,” then the
list of expected identifiers may be the subidentifiers of the
knownldentifier. The subidentifiers of the knownldentifier
may be stored in a separate data source. For example,
processing device 320 may query an algorithm and/or data-
base to determine the possible properties and/or members of
knownldentifer. On the other hand, if, for example, the
usage is “knownldentifier(‘unknownldentifief”),” process-
ing device 320 may query an algorithm and/or database to
determine if function knownldentifier has registered a list of
possible expected string inputs. Accordingly, the result of
the algorithm and/or database queries may be used as
expected identifiers.

In another example, if “unknownldentifier.identifier” is
entered, the unknownldentifier may be matched as if the
“identifier” were not included. Once processing device 320
finds one or more possible suggestions, processing device
320 may then query an algorithm and/or database to deter-
mine the list of subidentifiers of the possible suggestions.
The subidentifiers may be matched against the inputted
“identifier.” If, for example, possible matches are discov-
ered between a possible suggestion’s subidentifer and
“identifier,” the possible suggestion becomes more likely,
and if there are no matches, the possible suggestion may
become less likely or may be nullified.

Tlustrative Processing

FIG. 4 illustrates a portion of example keystroke penalty
matrix 400 for depicting mistyping penalties based on a
QWERTY keyboard layout in an illustrative embodiment.
Tlustrative keystroke penalty matrix 400 depicts a reduced
set of possible keys from, for example, a 128 by 128 matrix.
Each value in the matrix may represent a mistyping penalty.
The 128 values on each row and column may represent
characters which may include characters needed to enter a
known identifier, for example. Illustrative keystroke penalty
matrix 400 depicts keys “Q-E,” which may be a subset of all
keys. A keystroke penalty matrix used in an illustrative
embodiment may include a matrix for all possible keys or a
reduced set. The keystroke penalty matrix 400 may depict
how keystroke mistakes may be penalized. For example,
keys that are nearby may be penalized less than keys that are
further away.

The character entered or entered value 410 may be, for
example, a column identifier. The character of an expected
identifier or the character a user meant to type 420 may be,
for example, a row identifier. According to example key-
stroke penalty matrix 400, for example, an expected iden-
tifier that requires an “e,” mistyping “w” may incur a penalty
of 2, while mistyping “Q” may incur a much higher penalty
of 5. In this case, “Q” is uppercase and further away from
“e” on a standard QWERTY keyboard and, therefore, is less
likely to be typed by accident.

In another illustrative embodiment, for example, the
string “pkot” will have less penalty than “pqot” when
compared to the valid MATLAB® command “plot” because
“k” is immediately to the left of “1” on a standard QWERTY
keyboard and “q” is further away from “l.” Various rules
may be incorporated into the penalty matrix depending on
the particular information processing system. For example,
the penalty for mismatched case may be increased or
decreased depending on the particular processing system
300.

In one illustrative embodiment, keystroke penalty matrix
400 may be used in combination with a string matching
algorithm such as the Needleman-Wunsch algorithm or
Smith-Waterman algorithm, for example. The combination

US 9,449,044 B1

13

of a string matching algorithm and keystroke penalty matrix
400 may be employed as discussed regarding 750 of FIG. 7.

In an illustrative embodiment, a key may refer to a key on
a keyboard, where the keyboard may be input device 310. A
keyboard may be, for example, alphabetic, numeric, and/or
symbolic. A keyboard may be, for example, a QWERTY
keyboard, a Dvorak keyboard, a French-language keyboard,
a Spanish-language keyboard, a Korean-language keyboard,
an Arabic-language keyboard, a Chinese-language key-
board, a numeric-only keyboard, etc. The keys on the
keyboard may be representative of characters such as, but
not limited to, letters, symbols, and/or sounds in one or more
languages. A key may be representative of a symbol that is
not tied to a language (e.g. a mathematical symbol, a
paragraph symbol, etc.). Other input devices may be used in
place of a keyboard to practice the invention.

FIG. 5 illustrates example flowchart 500 describing pro-
cessing of keystroke penalty matrix 380 performed by
hardware and/or software in an illustrative embodiment. The
keystroke penalty matrix 380 may be visually represented as
400 in FIG. 4 and may be used in 750 of FIG. 7 (discussed
below).

In 510, keystroke penalty matrix 380 may be created for
comparing expected identifiers with those of entered, unrec-
ognized commands. In FIG. 4, illustrative keystroke penalty
matrix 400 illustrates a portion of an example keystroke
penalty matrix 380.

Keystroke penalty matrix 380 may assign the log of a
probability that the character is, for example, a match (e.g.,
the characters are the same), a case miss (e.g., the characters
are the same except case (e.g., “a” to “A”)), a close miss
(e.g., where the characters are one key away in terms of
physical distance on a keyboard (e.g., “g” to “h” on a
QWERTY layout)), a miss (e.g., where the characters are
over one key away in terms of physical distance on a
keyboard (e.g., “a” to “p” on a QWERTY layout)), a gap
open (e.g., where a non-matching character was inadver-
tently entered into the sequence), and/or a gap extend (e.g.,
where a non-matching character was inadvertently entered
into the sequence after a gap open). In addition to close miss
and case miss, close-case miss (e.g., the combination of
close miss and case miss) may also be calculated.

Keystroke penalty matrix 380 may be created based on
the keyboard layout of the system (e.g., designated by the
operating system) or as designated by the user. Varying
keyboard layouts may include, for example, QWERTY,
Dvorak, French, German, Spanish, Japanese, Chinese, Ara-
bic, Russian, etc.

In an embodiment, the following examples assume that
the expected identifier is “Hicklin.” If the entered command
was “Hicklin,” then there was a match. If the entered
command was “hicklin,” then a case miss penalty may be
charged (e.g., “h” not “H”). If the entered command was
“Hickoin,” then a close miss penalty may be charged (e.g.,
“0” not “1”). If the entered command was “Hicxlin,” then a
miss penalty may be charged (e.g., “x” not “I”). If the
entered command was “HicXklin,” then a gap open penalty
may be charged (e.g., extra character “X”). If the command
was “HicXYZklin,” then there may be one gap open (e.g.,
extra character “X”) and two gap extend penalties (e.g.,
extra characters “Y” and “Z”). If the entered command was
“Hiclin,” then there may be a gap penalty for the missing
“k.” If the entered command was “jicklin,” then the penalty
may be the sum of a close miss and a case miss for (1) a near
miss of 5” for the missing “H” and (2) a lowercase where
an uppercase was expected.

10

15

20

25

30

35

40

45

50

55

60

65

14

In an embodiment, example probabilities with a logarith-
mic value applied may include:

Match=log 10(0.969);

Case Miss=log 10(0.010);

Close Miss=log 10(0.010/6);

Miss=log 10(0.001/120);

Gap Open=log 10(0.005);

Gap Extend=log 10(0.005);

Close-Case Miss=log 10(0.010/6)+log 10(0.010);
Although keystroke penalty matrix 380 is referred to as a
“matrix,” other data structures may be used.

In 520, an inputted command may be received. The input
command may be received by input device 310. The input-
ted command may be inputted directly by a user or may
inputted by other means. For example, an input may be as an
optical character recognition (OCR) from a document or file.

In 530, the characters of the entered command may be
compared with the characters of expected identifiers 350. A
penalty value, as described above, may be calculated based
on the keystroke penalty matrix 380 for the characters of
expected identifiers 350, alternative identifiers 390 and
identifier patterns 395 (e.g., collectively known commands).
Known commands, when compared character-to-character
with the entered command, may be scored based on, for
example, whether the two characters are a match, different
cases, a close miss, a miss, a close-case miss, and/or whether
the spacing is incorrect.

In 540, a score may be calculated for expected identifiers
350 by adding the values calculated in 530 and then taking
the exponent of the addition result.

FIG. 6 illustrates a portion of an example identifier
frequency graph 600 depicting the probability of occurrence
of a subset of identifiers in an illustrative embodiment.
Identifier frequency graph 600 depicts a reduced set of
expected identifiers from an illustrative embodiment. The
full set of identifiers and corresponding probabilities of
occurrence may vary considerably depending on the pro-
cessing system used and context. Identifier frequency graph
600 depicts that the identifier “plot” occurring as an input
string is significantly higher than, for example, the identifier
“num?2str.” Identifier frequency graph 600 is an illustrative
sample visual depiction of a subset of expected identifiers
350 of FIG. 3 and created in 720 of FIG. 7.

In one embodiment, a collection of usage statistics may
provide a learning aspect which allows an illustrative
embodiment to customize itself to particular usage charac-
teristics. Collection of statistics and assignment of the recal-
culated frequency of occurrence (e.g., identifier frequency
graph 600) may occur periodically (e.g., every minute, hour,
week, month, etc.) or may occur in real-time and/or con-
tinuously. This feature may provide specific customization
where different users may use various commands with more
or less frequency. Commands that are used frequently by
others may then be given a higher probability of occurrence
and, therefore, may be more likely to be presented as a
user-selectable suggestion.

FIG. 7 illustrates example flowchart 700 describing pro-
cessing performed by hardware in an illustrative embodi-
ment. In 710, known commands may be accessed. The
known commands may include, for example, expected iden-
tifiers 350, alternative identifiers 390, and/or identifier pat-
terns 395.

In 720, a frequency of occurrence (such as identifier
frequency graph 600 in FIG. 6) may be calculated for the
known commands. The known commands and the associ-
ated frequency of occurrences of the identifiers may be
called a prior probability distribution or “the prior.”

US 9,449,044 B1

15

In 730, a command may be received that contains one or
more entered identifiers. The command may be entered in by
a user using input device 360 or may be received through
other inputs such as OCR.

In 740, at least one possible mistake may be detected in
the one or more entered identifiers.

In 750, a first numerical score or the known commands
may be calculated using a string matching algorithm, a
keystroke penalty matrix 380, and the detected at least one
possible mistake. The string matching algorithm may be
based on, for example, the Needleman-Wunsch algorithm or
Smith-Waterman algorithms. Additionally, the keystroke
penalty matrix 380 may be created in block 510 of FIG. 5,
and may be visually represented as sample keystroke penalty
matrix 400 in FIG. 4.

In 760, a second numerical score may be calculated using
the frequencies of occurrence of the known commands (e.g.,
Bayes algorithm) and the first numerical score. For example,
sample frequencies of occurrence may be visualized as
identifier frequency graph in FIG. 6.

In 770, one or more expected identifiers may be selected
using the first numerical score and the second numerical
score.

In 780, user-selectable command(s) may be created using
the one or more selected expected identifiers. In one embodi-
ment, the number of displayed suggested user-selectable
commands may vary depending on the determined probabil-
ity that what was inputted was intended to be the user-
selectable command. For example, if the probability was
90% that what was entered was intended to be the found
identifier(s) from 770 then only one user-selectable com-
mand may be displayed. However, if, for example, two
identifiers from 770 each had a 40% probability that they
were intended to be what was inputted in 730, then both
values may be displayed. Similarly, for example, if three
found identifier(s) from 770 each had a 30% probability that
they were intended to be to be what was inputted in 730 then
all three values may be displayed as user selectable com-
mands. Identifiers from 770 with a low probability (e.g., but
not limited to, less than 20%) may not be of value to the user
and may cause unnecessary user confusion and therefore,
may not be displayed. Alternatively, the identifiers from 770
having the highest one, two, three, etc. probabilities may be
displayed on output device 360 as user-selectable com-
mands. In other embodiments, the identifier with the highest
probability may be automatically selected and entered into
the system for calculation and/or implementation and no
user-selectable command may be displayed to the user.

In 790, the user-selectable command(s) may be displayed.

In 795, user modification of the user-selectable command
may be allowed.

Accordingly, user-selected command from 780 or user-
modified command from 795 may then be entered into the
system for calculation.

Example Software Implementation

FIGS. 8A and 8B illustrate illustrative software code 810
(FIG. 8A) and 820 (FIG. 8B) that may implement an
illustrative embodiment of the invention. Example software
code listing 820 is a continuation from software code listing
810. In an illustrative embodiment, function call 830 may be
used for 510 to create keystroke penalty matrix 380. The
variable typedString 840 may be the inputted command as in
520. Blocks 530 and 540 may be shown in loop 850.

Example software code 810 and 820 may be stored in
memory 370 and/or storage device 1040 (FIG. 10). Example

5

10

15

20

25

30

35

40

45

55

60

65

16
software code 810 and 820 are written in the MATLAB
Programming®. language, but similar implementations may
be written in other types of programming languages such as,
but not limited to, C/C++, Fortran, Forth, Ada, Pascal,
JavaScript, Python, C#, Java, Visual Basic, etc.

Example Distributed System

FIG. 9 illustrates distributed environment 900 that may be
configured to practice an illustrative embodiment. Referring
to FIG. 9, environment 900 may include a client 910,
network 940, service provider 950, target environment 960
and cluster 970. Note that the distributed environment
illustrated in FIG. 9 is just one example of a distributed
environment that may be used. Other distributed environ-
ments may include additional devices, fewer devices, or
devices in arrangements that differ from the arrangement of
environment 900. For example, distributed environment 900
can be implemented as a computing cloud if desired.

Client 910 may include a device capable of sending
and/or receiving information (e.g., data) to and/or from
another device, such as target environment 960. Information
may include any type of machine-readable information
having substantially any format that may be adapted for use,
e.g., in one or more networks and/or with one or more
devices. The information may include digital information
and/or analog information. The information may further be
packetized and/or non-packetized. In an embodiment, client
910 may download data and/or code via network 940. For
example, client 910 can download code for suggesting
correct identifiers consistent with aspects of the invention.

Client 910 may be, for example, a desktop computer, a
laptop computer, a client computer, a server computer, a
mainframe computer, a personal digital assistant (PDA), a
web-enabled cellular telephone, a smart phone, smart sen-
sor/actuator, or another computation or communication
device that executes instructions that enable the device to
perform one or more activities and/or generate one or more
results.

In an illustrative embodiment, client 910 may include a
technical computing environment (TCE) 920, graphical
modeling software 930 and analysis software 935. TCE 920
may include a graphical block diagram environment that
may be used to execute models and manipulate the models
in accordance with techniques described herein. In other
illustrative embodiments, client 910 may include other com-
ponents, applications, etc. [llustrative embodiments of TCE
920 may contain computer-executable instructions (e.g.,
code) and data that are configured to implement the TCE.
The instructions may include instructions configured to
implement graphical modeling software 920 and/or graphi-
cal analysis software 935. An example embodiment of the
invention may be implemented in a TCE 910.

Modeling software 930 and analysis software 935 may be
graphical, textual or a hybrid that includes both textual and
graphical capabilities/features. Modeling software 930 may
include computer-executable instructions that allow, e.g., a
user to build and/or execute a model. For example, modeling
software 930 may allow a user to build and execute a
time-based model, a state-based model, an event-based
model, a dataflow-based model, etc. An example embodi-
ment of the invention may be implemented as part of
modeling software 930.

Analysis software 935 may include computer-executable
instructions that allow information in a model to be evalu-
ated. Evaluating a model may include generating tests for
the model that satisfy model coverage objectives, user-

US 9,449,044 B1

17

defined objectives, etc. In addition, evaluating a model may
include proving various model properties and generating
examples of violations of these properties. Moreover, evalu-
ating a model may include analyzing the model, in accor-
dance with techniques described herein. In an illustrative
embodiment, analysis software 935 may include the Simu-
link® Design Verifier software which is available from The
MathWorks, Inc. An example embodiment of the invention
may be implemented as part of analysis software 935.

Network 940 may include any network capable of
exchanging information between entities associated with the
network, including, for example, client 910, service provider
950, target environment 960 and cluster 970. Exchanged
information may include, for example, packet data and/or
non-packet data. Implementations of network 940 may
include local area networks (LLANs), metropolitan area net-
works (MANs), wide-area networks (WANs), etc. Informa-
tion may be exchanged between entities using any network
protocol, such as, but not limited to, the Internet Protocol
(IP), Asynchronous Transfer Mode (ATM), Synchronous
Optical Network (SONET), the User Datagram Protocol
(UDP), Institute of Electrical and FElectronics Engineers
(IEEE) 802.11, etc.

Network 940 may include various network devices, such
as, for example, routers, switches, firewalls, servers, etc.
Portions of network 940 may be wired (e.g., using wired
conductors, optical fibers, etc.) and/or wireless (e.g., free-
space optical (FSO), radio frequency (RF), acoustic trans-
mission paths, etc.). Portions of network 940 may include a
substantially open public network, such as the Internet.
Portions of network 940 may include a more restricted
network, such as a virtual private network (VPN). It should
be noted that implementations of networks and/or devices
operating on networks described herein are not limited with
regards to information carried by the networks, protocols
used in the networks, the architecture/configuration of the
networks, etc.

Service provider 950 may include code (e.g., software),
logic (e.g., hardware or a combination of hardware and
software), etc., that makes a service available to another
device in distributed environment 900. Service provider 950
may include a server operated by an entity (e.g., an indi-
vidual, a corporation, an educational institution, a govern-
ment agency, etc.) that provides one or more services to a
destination, such as client 910. The services may include
software containing computer-executable instructions that
may be executed, in whole or in part, by a destination, by
service provider 950 on behalf of the destination, or some
combination thereof. An example embodiment of the inven-
tion may be implemented as part of service provider 950.

For example, in an illustrative embodiment, service pro-
vider 950 may provide one or more subscription-based
services to various customers via network 940. These ser-
vices may be accessed by the customer (e.g., via client 910).
Service provider 950 may limit access to certain services
based on, e.g., a customer service agreement between the
customer and service provider 950. The service agreement
may allow the customer to access services that allow the
customer to build and/or execute a model. In addition, the
service agreement may allow the customer to further analyze
models, generate code from the models, generate various
reports, access audit services that allow a customer’s code to
be audited, etc. The service agreement may include other
types of arrangements, such as certain fee-based arrange-
ments or restricted access arrangements. For example, a
customer may pay a fee which provides the customer
unlimited access to a given package of services for a given

10

15

20

25

30

35

40

45

50

55

60

65

18

time period (e.g., hourly, daily, monthly, yearly, etc.). For
services not included in the package, the customer may have
to pay an additional fee in order to access the services. Still
other arrangements may be resource-usage based. For
example, the customer may be assessed a fee based on an
amount of computing resources used, network bandwidth
used, etc.

Target environment 960 may include a device that
receives information from client 910, service provider 950,
or cluster 970. For example, target environment 960 may
receive executable code from client 910, where the execut-
able code allows target environment to perform an operation
when the code is executed. Client 910 may have generated
the executable code using TCE 920, graphical modeling
software 930, and/or a code generator (not shown in FIG. 9).

Cluster 970 may include a number of processing
resources that perform processing on behalf of another
device, such as client 910, service provider 950 and/or target
environment 960. Cluster 970 may include logic that man-
ages and/or coordinates the operation of multiple processing
resources. For example, cluster 970 may send data to and/or
receive results from these processing resources. In an illus-
trative embodiment, cluster 970 may include units of execu-
tion (UEs) 9804, b, ¢, and d (collectively UEs 980) that may
perform processing on behalf of client 910 and/or another
device, such as service provider 950. An example embodi-
ment of the invention may be implemented on one or more
UEs 980.

UEs 980 may include hardware, software, or hybrid logic
that perform processing operations on behalf of TCE 920.
For example, in an illustrative embodiment UEs 980 may
parallel process portions of a graphical model created by
user of client 910. This parallel processing may include
performing analysis on the model, parsing the model into
portions, and/or aggregating results from respective UEs
980 into a single result for display to a user at client 910.
UEs 980 may reside on a single device or chip or on multiple
devices or chips. For example, UEs 980 may be imple-
mented in a single application specific integrated circuit
(ASIC) or in multiple ASICs. Likewise, UEs 980 can be
implemented in a single computer system using virtualiza-
tion techniques. Other examples of UEs 980 may include
field programmable gate arrays (FPGAs), complex program-
mable logic devices (CPLDs), application specific instruc-
tion-set processors (ASIPs), microprocessors, etc.

TCE 920 may include hardware and/or software based
logic that provides a computing environment that allows
users to perform tasks related to disciplines, such as, but not
limited to, mathematics, science, engineering, medicine,
business, etc., more efficiently than if the tasks were per-
formed in another type of computing environment, such as
an environment that required the user to develop code in a
conventional programming language, such as C++, C, For-
tran, Pascal, etc.

In one implementation, TCE 920 may include a dynami-
cally typed language that can be used to express problems
and/or solutions in mathematical notations familiar to those
of skill in the relevant arts. For example, TCE 920 may use
an array as a basic element, where the array may not require
dimensioning. These arrays may be used to support array
programming in that operations can apply to an entire set of
values, such as values in an array. Array programming may
allow array based operations to be treated as a high-level
programming technique or model that lets a programmer
think and operate on whole aggregations of data without
having to resort to explicit loops of individual non-array, i.e.,
scalar operations.

US 9,449,044 B1

19

TCE 920 may further be adapted to perform matrix and/or
vector formulations that can be used for data analysis, data
visualization, application development, simulation, model-
ing, algorithm development, etc. These matrix and/or vector
formulations may be used in many areas, such as statistics,
finance, image processing, signal processing, control design,
life sciences, education, discrete event analysis and/or
design, state based analysis and/or design, etc.

TCE 920 may further provide mathematical functions
and/or graphical tools (e.g., for creating plots, surfaces,
images, volumetric representations, etc.). In one implemen-
tation, TCE 920 may provide these functions and/or tools
using toolboxes (e.g., toolboxes for signal processing, image
processing, data plotting, parallel processing, optimization,
etc.). In another implementation, TCE 920 may provide
these functions as block sets (e.g., an optimization block
set). In still another implementation, TCE 920 may provide
these functions in another way, such as via a library, etc.
TCE 920 may be implemented as a text based environment,
a graphically based environment, or another type of envi-
ronment, such as a hybrid environment that is both text and
graphically based.

As an example, example software code 810 and 820 may
be complied and processed by processing device 320 and
implemented in TCE 920.

Tustrative Computing Architecture Example
System

FIG. 10 illustrates an example of a computer system 1000
that may be configured to practice an illustrative embodi-
ment of the invention. For example, computer system 1000
may be used to implement client 910, service provider 950,
target environment 960, etc. Computer system 1000 may
include processing device 320, memory 370, storage device
1040, input device 310, output device 360, interconnect
1050 and network interface 1080. For example, output
device 360 may include logic configured to output informa-
tion from computer system 1000. Processing device 320,
memory 370, input device 310, and output device 360 may
be configured and implemented as discussed in FIG. 3.

Storage device 1040 may include a magnetic disk and/or
optical disk and its corresponding drive for storing infor-
mation and/or instructions.

Interconnect 1050 may include logic that operatively
couples components of computer system 1000 together. For
example, interconnect 1050 may allow components to com-
municate with each other, may provide power to compo-
nents of computer system 1000, etc. In an illustrative
embodiment of computer system 1000, interconnect 1050
may be implemented as a bus.

Network interface 1080 may include logic configured to
interface computer system 1000 with a network, e.g., net-
work 940, and may enable computer system 1000 to
exchange information with other entities connected to the
network, such as, for example, service provider 950, target
environment 960 and cluster 970. Network interface 1080
may be implemented as a built-in network adapter, network
interface card (NIC), Personal Computer Memory Card
International Association (PCMCIA) network card, card bus
network adapter, wireless network adapter, Universal Serial
Bus (USB) network adapter, modem or any other device
suitable for interfacing computer system 1000 to any type of
network.

It should be noted that illustrative embodiments may be
implemented using some combination of hardware and/or
software. It should be further noted that a computer-readable

10

15

20

25

30

40

45

50

55

20

medium that includes computer-executable instructions for
execution in one or more processors may be configured to
store illustrative embodiments of the invention. The com-
puter-readable medium may include volatile memories, non-
volatile memories, flash memories, removable discs, non-
removable discs and so on. In addition, it should be noted
that various electromagnetic signals such as wireless signals,
electrical signals carried over a wire, optical signals carried
over optical fiber and the like may be encoded to carry
computer-executable instructions and/or computer data on
e.g., a communication network for an illustrative embodi-
ment. The computer-readable medium may include tangible
non-transitory storage media that may store one or more
computer-executable instructions executable by, for
example, processing device 320.

A hardware unit of execution may include a device (e.g.,
a hardware resource) that performs and/or participates in
parallel programming activities. For example, a hardware
unit of execution may perform and/or participate in parallel
programming activities in response to a request and/or a task
it has received (e.g., received directly or via a proxy). A
hardware unit of execution may perform and/or participate
in substantially any type of parallel programming (e.g., task,
data, stream processing, etc.) using one or more devices. For
example, in one implementation, a hardware unit of execu-
tion may include a single processing device that includes
multiple cores, and in another implementation, the hardware
unit of execution may include a number of processing
devices 320. A hardware unit of execution may also be a
programmable device, such as a field programmable gate
array (FPGA), an application specific integrated circuit
(ASIC), a digital signal processor (DSP), etc. Devices used
in a hardware unit of execution may be arranged in sub-
stantially any configuration (or topology), such as a grid,
ring, star, etc. A hardware unit of execution may support one
or more threads (or processes) when performing processing
operations.

A software unit of execution may include a software
resource (e.g., a technical computing environment [e.g.,
MATLAB® software], a worker, a lab, etc.) that performs
and/or participates in parallel programming activities. For
example, a software unit of execution may perform and/or
participate in parallel programming activities in response to
receipt of a program and/or one or more portions of the
program. In an illustrative embodiment, a software unit of
execution may perform and/or participate in substantially
any type of parallel programming using one or more hard-
ware units of execution. Illustrative embodiments of a
software unit of execution may support one or more threads
and/or processes when performing processing operations.

Alternative Illustrative Embodiments

An alternative illustrative embodiment may implement
TCE 920 using one or more text-based products. For
example, a text-based TCE 920, may be implemented using
products such as, but not limited to, MATLAB®; Octave;
Python; R; Comsol Script; MATRIXx from National Instru-
ments; Mathematica from Wolfram Research, Inc.; Mathcad
from Mathsoft Engineering & Education Inc.; Maple from
Maplesoft; Extend from Imagine That Inc.; Scilab from The
French Institution for Research in Computer Science and
Control (INRIA); Virtuoso from Cadence; or Modelica or
Dymola from Dynasim.

Other illustrative embodiments may implement TCE 920
in a graphically-based TCE 920 using products such as, but
not limited to, Simulink®, Stateflow®, SimEvents™, etc.,

US 9,449,044 B1

21

by The MathWorks, Inc.; VisSim by Visual Solutions; Lab-
View™ by National Instruments; Dymola by Dynasim;
SoftWIRE by Measurement Computing; Wil by DALSA
Coreco; VEE Pro or SystemVue by Agilent; Vision Program
Manager from PPT Vision; Khoros from Khoral Research;
Gedae by Gedae, Inc.; Scicos from (INRIA); Virtuoso from
Cadence; Rational Rose from IBM; Rhopsody or Tau from
Telelogic; Ptolemy from the University of California at
Berkeley; or aspects of a Unified Modeling Language
(UML) or SysML environment.

Another alternative illustrative embodiment may be
implemented in a language that is compatible with a product
that includes TCE 920, such as one or more of the above
identified text-based or graphically-based TCE’s 920. For
example, MATLAB® (which is an example of a text-based
TCE 920) may use a first command to represent an array of
data and a second command to transpose the array. Another
product, that may or may not include TCE 920, may be
MATLAB®-compatible and may be able to use the array
command, the array transpose command, or other MAT-
LAB® commands. For example, the other product may use
the MATLAB® commands to suggest proper identifiers
when an unrecognized identifier is presented.

Yet another alternative illustrative embodiment may be
implemented in a hybrid TCE 920 that combines features of
a text-based and graphically-based TCE 920. In one imple-
mentation, one TCE 920 may operate on top of the other
TCE 920. For example, a text-based TCE 920 (e.g., MAT-
LAB®) may operate as a foundation and a graphically-based
TCE 920 (e.g., Simulink) may operate on top of MATLAB®
and may take advantage of text-based features (e.g., com-
mands) to provide a user with a graphical user interface and
graphical outputs (e.g., graphical displays for data, dash-
boards, etc.).

CONCLUSION

Implementations may provide devices and techniques that
implement one or more algorithms to identify and display
the most likely intended identifier(s) and/or suggest alter-
native syntax for inputted identifiers. A first algorithm may
use, for example, a string matching algorithm combined
with a keystroke penalty matrix to determine the probability
for each identifier of a user typing the unrecognized iden-
tifier or series of identifiers when they intended to type the
identifier from a list of expected identifiers and/or a list of
recognized patterns of identifiers. A second algorithm may
use a form of Bayes’ theorem, for example, with the
probability of occurrence for each identifier and the results
of the first algorithm to further determine the probability of
what the user intended to type. The highest results may be
transferred and/or displayed to the user for selection or
automatically inserted if the probability is high enough.

Another illustrative embodiment may allow a user to
modify the suggested identifier prior to execution of the
suggested identifier.

The foregoing description of example embodiments of the
invention provides illustration and description, but is not
intended to be exhaustive or to limit the invention to the
precise form disclosed. Modifications and variations are
possible in light of the above teachings or may be acquired
from practice of the invention. For example, while a series
of acts has been described with regard to FIGS. 7 and 5, the
order of the acts may be modified in other implementations
consistent with the principles of the invention. Further,
non-dependent acts may be performed in parallel.

10

25

35

40

45

55

60

65

22

In addition, implementations consistent with principles of
the invention can be implemented using devices and con-
figurations other than those illustrated in the figures and
described in the specification without departing from the
spirit of the invention. Devices and/or components may be
added and/or removed from the implementations of FIGS. 3,
9, and 10. depending on specific deployments and/or appli-
cations. Further, disclosed implementations may not be
limited to any specific combination of hardware.

Further, certain portions of the invention may be imple-
mented as “logic” that performs one or more functions. This
logic may include hardware, such as hardwired logic, an
application-specific integrated circuit, a field programmable
gate array, a microprocessor, software, wetware, or a com-
bination of hardware and software.

No element, act, or instruction used in the description of
the invention should be construed as critical or essential to
the invention unless explicitly described as such. Also, as
used herein, the article “a” is intended to include one or more
items. Where only one item is intended, the term “one” or
similar language is used. Further, the phrase “based on,” as
used herein is intended to mean “based, at least in part, on”
unless explicitly stated otherwise.

Headings and/or subheadings used herein are used to
segment this patent application into portions to facilitate the
readability of the application. These headings and/or sub-
headings are not intended to define or limit the scope of the
invention disclosed and/or claimed in this patent application.

The scope of the invention is defined by the claims and
their equivalents.

What is claimed is:
1. A method, comprising:
receiving a command, the command comprising:
a first name,
a second name, and
a dot operator, the dot operator being between the first
name and the second name,
the receiving performed using one or more computing
devices;
detecting a possible mistake in the second name,
the detecting performed using one or more computing
devices;
accessing a set of known identifiers, the set of known
identifiers including expected identifiers,
the accessing performed using the one or more com-
puting devices;
calculating a first numerical score for the known identi-
fiers using a keyboard penalty matrix and based on the
possible mistake detected in the second name and the
known identifiers,
the calculating the first numerical score performed
using the one or more computing devices;
calculating a second numerical score using frequencies of
occurrence of the known identifiers and the calculated
first numerical score,
the calculating the second numerical score performed
using the one or more computing devices; and
selecting one or more expected identifiers for the second
name,
the selecting being based on the first numerical score
and the second numerical score, and
the selecting performed using the one or more com-
puting devices.
2. The method of claim 1, where the second name is
located to the right of the first name on a command line or
in a software code listing.

US 9,449,044 B1

23

3. The method of claim 2, where the first name is
associated with a class and the second name is associated
with a method, a property, or an enumerated value.

4. The method of claim 2, where the first name is
associated with an instance and the second name is associ-
ated with a method or a property.

5. The method of claim 2, where the first name is
associated with a package and the second name is associated
with a class or a function.

6. The method of claim 2, where the first name is
associated with a first package and the second name is
associated with a second package.

7. The method of claim 2, where the first name is
associated with a struct instance and the second name is
associated with a field.

8. The method of claim 2, wherein the second name is
within scope of the first name.

9. The method of claim 1, further comprising identifying
the set of known identifiers based on the first name.

10. One or more non-transitory computer-readable stor-
age media storing instructions, the instructions comprising:

one or more instructions that, when executed by one or

more processors, cause the one or more processors to:

receive a command, the command comprising:
a first name,
a second name, and
a dot operator, the dot operator being between the

first name and the second name;

detect a possible mistake in the second name;

access a set of known identifiers, the set of known
identifiers including expected identifiers;

calculate a first numerical score for the known identi-
fiers using a keyboard penalty matrix and based on
the possible mistake detected in the second name and
the known identifiers;

calculate a second numerical score using frequencies of
occurrence of the known identifiers and the calcu-
lated first numerical score; and

select one or more expected identifiers for the second
name, the selecting being based on the first numeri-
cal score and the second numerical score.

11. The one or more computer-readable storage media of
claim 10, where the first name is located to the right of the
second name on a command line or in a software code
listing.

12. The one or more computer-readable storage media of
claim 11, where the second name is associated with a class
and the first name is associated with a method, a property, or
an enumerated value.

13. The one or more computer-readable storage media of
claim 11, where the second name is associated with an
instance and the first name is associated with a method or a

property.

15

25

30

35

40

45

24

14. The one or more computer-readable storage media of
claim 11, where the second name is associated with a
package and the first name is associated with a class or a
function.
15. The one or more computer-readable storage media of
claim 11, where the second name is associated with a first
package and the first name is associated with a second
package.
16. The one or more computer-readable storage media of
claim 11, where the second name is associated with a struct
instance and the first name is associated with a field.
17. The one or more computer-readable storage media of
claim 10, further comprising instructions to identify the set
of known identifiers based on the first name.
18. The one or more computer-readable storage media of
claim 11, wherein the first name is within scope of the
second name.
19. The one or more computer-readable storage media of
claim 10, where the second name is located to the right of
the first name on a command line or in a software code
listing and the second name is within scope of the first name.
20. A device, comprising:
a processor to execute machine-readable instructions, the
instructions when executed causing the processor to:
receive a command, the command comprising:
a first name,
a second name, and
a dot operator, the dot operator being between the
first name and the second name;

detect a possible mistake in the second name;

access a set of known identifiers, the set of known
identifiers including expected identifiers;

calculate a first numerical score for the known identi-
fiers using a keyboard penalty matrix and based on
the possible mistake detected in the second name and
the known identifiers; and

select one or more expected identifiers for the second
name, the selecting being based on the first numeri-
cal score.

21. The device of claim 20, where the second name is
located to the left of the first name on a command line or in
a software code listing.

22. The device of claim 21, wherein the first name is
within scope of the second name.

23. The device of claim 20, further comprising instruc-
tions to identify the set of known identifiers based on the first
name.

24. The device of claim 20, where the second name is
located to the right of the first name on a command line or
in a software code listing and the second name is within
scope of the first name.

#* #* #* #* #*

